I - B.TECH EXAMINATIONS, DECEMBER - 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIO-TECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Define the following:
i) Alternating Quantity
ii) R.M.S Value
iii) Average Value
iv) Form factor.
b) A coil having a resistance of 10 ohms and an inductance of 0.2 H is connected in series with a $100 \times 10^{-6} \mathrm{~F}$ capacitor across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, Calculate:
i) The active and reactive components of the current
ii) The voltage across the coil, Draw the phasor diagram.
2. Explain with the help of suitable diagrams how rotating magnetic field is produced in a three phase induction motor.
3.a) Discuss the classification of electrical instruments.
b) Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments.
[8+8]
4.a) In a bridge rectifier, the transformer is connected to $220 \mathrm{~V}, 60 \mathrm{~Hz}$ mains and the turns ratio of the step down transformer is $11: 1$. Load resistance is 800Ω. Assuming the diode is ideal, find:
i) I_{dc}
ii) Voltage across the load
iii) PIV.
b) Draw the circuit diagram of full wave rectifier having two diodes and explain its operation.
[8+8]
5.a) What are the bias compensation techniques? Explain the operation of one among them.
b) Define FET parameters and derive the relationship between them.
[8+8]
6.a) Draw the circuit of a transformer coupled amplifier and explain its operations.
b) Draw the circuit of a class B push-pull amplifier and derive expression for the output power.
7.a) Draw the internal diagram of OP-AMP. Explain the function of each block.
b) What do you understand about the term "Virtual ground"? Give the circuit diagram for differentiate circuit using OP-AMP and prove that a triangular waveform with frequency 5 KHz is converted into rectangular waveform of the same frequency.
[8+8]
8.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3-stage unit.
b) Prove that if $w^{\prime} x+y z=0$, then $w x+y^{\prime}\left(w^{\prime}+z^{\prime}\right)=w x+x z+x^{\prime} z^{\prime}+w^{\prime} y^{\prime} z$
c) Represent the given negative numbers in sign-magnitude, 1 's and 2 's complement representation in 12-bit format.
i) -64
ii) -512
[6+6+4]

I - B.TECH EXAMINATIONS, DECEMBER - 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIO-TECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Discuss the classification of electrical instruments.
b) Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments.
[8+8]
2.a) In a bridge rectifier, the transformer is connected to $220 \mathrm{~V}, 60 \mathrm{~Hz}$ mains and the turns ratio of the step down transformer is 11:1. Load resistance is 800Ω. Assuming the diode is ideal, find:
i) I_{dc}
ii) Voltage across the load
iii) PIV.
b) Draw the circuit diagram of full wave rectifier having two diodes and explain its operation.
[8+8]
3.a) What are the bias compensation techniques? Explain the operation of one among them.
b) Define FET parameters and derive the relationship between them.
4.a) Draw the circuit of a transformer coupled amplifier and explain its operations.
b) Draw the circuit of a class B push-pull amplifier and derive expression for the output power.
5.a) Draw the internal diagram of OP-AMP. Explain the function of each block.
b) What do you understand about the term "Virtual ground"? Give the circuit diagram for differentiate circuit using OP-AMP and prove that a triangular waveform with frequency 5 KHz is converted into rectangular waveform of the same frequency.
[8+8]
6.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3-stage unit.
b) Prove that if $w^{\prime} x+y z=0$, then $w x+y^{\prime}\left(w^{\prime}+z^{\prime}\right)=w x+x z+x^{\prime} z^{\prime}+w^{\prime} y^{\prime} z$
c) Represent the given negative numbers in sign-magnitude, 1's and 2's complement representation in 12-bit format.
i) -64
ii) -512
[6+6+4]
7.a) Define the following:
i) Alternating Quantity
ii) R.M.S Value
iii) Average Value
iv) Form factor.
b) A coil having a resistance of 10 ohms and an inductance of 0.2 H is connected in series with a $100 \times 10^{-6} F$ capacitor across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, Calculate:
i) The active and reactive components of the current
ii) The voltage across the coil, Draw the phasor diagram.
8. Explain with the help of suitable diagrams how rotating magnetic field is produced in a three phase induction motor.

I - B.TECH EXAMINATIONS, DECEMBER - 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIO-TECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) What are the bias compensation techniques? Explain the operation of one among them.
b) Define FET parameters and derive the relationship between them.
2.a) Draw the circuit of a transformer coupled amplifier and explain its operations.
b) Draw the circuit of a class B push-pull amplifier and derive expression for the output power.
[8+8]
3.a) Draw the internal diagram of OP-AMP. Explain the function of each block.
b) What do you understand about the term "Virtual ground"? Give the circuit diagram for differentiate circuit using OP-AMP and prove that a triangular waveform with frequency 5 KHz is converted into rectangular waveform of the same frequency.
[8+8]
4.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3 -stage unit,
b) Prove that if $w^{\prime} x+y z=0$, then $w x+y^{\prime}\left(w^{\prime}+z^{\prime}\right)=w x+x z+x^{\prime} z^{\prime}+w^{\prime} y^{\prime} z$
c) Represent the given negative numbers in sign-magnitude, 1's and 2's complement representation in 12-bit format.
i) -64
ii) -512
[6+6+4]
5.a) Define the following:
i) Alternating Quantity
ii) R.M.S Value
iii) Average Value
iv) Form factor.
b) A coil having a resistance of 10 ohms and an inductance of 0.2 H is connected in series with a $100 \times 10^{-6} \mathrm{~F}$ capacitor across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, Calculate:
i) The active and reactive components of the current
ii) The voltage across the coil, Draw the phasor diagram.
6. Explain with the help of suitable diagrams how rotating magnetic field is produced in a three phase induction motor.
7.a) Discuss the classification of electrical instruments.
b) Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments.
8.a) In a bridge rectifier, the transformer is connected to $220 \mathrm{~V}, 60 \mathrm{~Hz}$ mains and the turns ratio of the step down transformer is $11: 1$. Load resistance is 800Ω. Assuming the diode is ideal, find:
i) $I_{d c}$
ii) Voltage across the load
iii) PIV.
b) Draw the circuit diagram of full wave rectifier having two diodes and explain its operation.

I - B.TECH EXAMINATIONS, DECEMBER - 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (BIO-TECHNOLOGY)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Draw the internal diagram of OP-AMP. Explain the function of each block.
b) What do you understand about the term "Virtual ground"? Give the circuit diagram for differentiate circuit using OP-AMP and prove that a triangular waveform with frequency 5 KHz is converted into rectangular waveform of the same frequency.
2.a) Explain how a shift register is used as a Ring counter. Draw the O/P waveform from each flip-flop of a 3 -stage unit.
b) Prove that if $w^{\prime} x+y z=0$, then $w x+y^{\prime}\left(w^{\prime}+z^{\prime}\right)=w x+x z+x^{\prime} z^{\prime}+w^{\prime} y^{\prime} z$
c) Represent the given negative numbers in sign-magnitude, 1 's and 2 's complement representation in 12-bit format.
i) -64
ii) -512
$[6+6+4]$
3.a) Define the following:
i) Alternating Quantity
ii) R.M.S Value
iii) Average Value
iv) Form factor.
b) A coil having a resistance of 10 ohms and an inductance of 0.2 H is connected in series with a $100 \times 10^{-6} \mathrm{~F}$ capacitor across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, Calculate:
i) The active and reactive components of the current
ii) The voltage across the coil, Draw the phasor diagram.
4. Explain with the help of suitable diagrams how rotating magnetic field is produced in a three phase induction motor.
5.a) Discuss the classification of electrical instruments.
b) Explain the significance of controlling torque and damping torque relevant to the operation of indicating instruments.
6.a) In a bridge rectifier, the transformer is connected to $220 \mathrm{~V}, 60 \mathrm{~Hz}$ mains and the turns ratio of the step down transformer is 11:1. Load resistance is 800Ω. Assuming the diode is ideal, find:
i) $I_{d c}$
ii) Voltage across the load
iii) PIV.
b) Draw the circuit diagram of full wave rectifier having two diodes and explain its operation.
7.a) What are the bias compensation techniques? Explain the operation of one among them.
b) Define FET parameters and derive the relationship between them.
8.a) Draw the circuit of a transformer coupled amplifier and explain its operations.
b) Draw the circuit of a class B push-pull amplifier and derive expression for the output power.

